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ABSTRACT 0

J The motion of a two-dimensional bubble rising at a constant velocity U

in a tube of width h is considered. The acceleration of gravity g and the

surface tension T are included in the dynamic boundary condition. For T =

0, the results of Garabedian and Vanden-Broeck show that a solution exists

for all values of the Froude number F = U/(ghY '2 smaller than a critical

value F c 0.36. In this paper accurate numerical solutions with T( 0 arec

computed by series truncations. The results show that for each value of

T t 0, there exists a countably infinite number of solutions. Each of these

solutions corresponds to a different value of F. As T tends to zero, all

these solutions approach a unique limiting solution characterized by

F = F* - 0.23. Therefore, the degenerancy associated with T - 0 is removed

by including the effect of surface tension. In addition the profile corre-

sponding to F = F* is found to be in good agreement with experimental data.
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SIGNIFICANCE AND EXPLANATION

The motion of a two-dimensional bubble rising at a constant velocity U

in a tube of width h is considered (see Figure 1). The acceleration of the

gravity g and the surface tension T are included in the formulation of the

problem. For T - 0, Garabedian I and Vanden-Broeck2 have shown that a

solution exists for all values of F smaller than a critical value Fc.

Garabediani used a stability argument to suggest that the only physically

acceptable solution is the one corresponding to F - Fc. Vanden-Broeck 2

solved the problem with T - 0 numerically. He found that Fc - 0.36. This

value is about forty percent higher than the experimental value of 0.25 of

Collins3. -

In the present paper we show that the discrepancy between the theoretical

value 0.36 and the experimental value 0.25 is considerably reduced by taking

into account the effect of surface tension. We show that for each value of p

T * 0, there exists a countably infinite number of solutions. As T tends

to zero, all these solutions approach a unique limiting configuration

characterized by F - F* - 0.23. 5

These results imply that the physically revelant solution, when T = 0,

is not the solution corresponding to F = F C 0.36 but the soltuion

corresponding to F - F* - 0.23.

S

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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RISING BUBBLES IN A TWO-DIMENSIONAL TUBE WITH SURFACE TENSION

Jean-Marc Vanden-Broeck

I. Introduction

We consider a bubble rising at a constant velocity U in a two-

dimensional tube of width h. We choose a frame of reference moving with the

bubble and we assume that the bubble extends downwards without limit (see Fig.

1.)

As we shall see the problem is characterized by the Froude number

F- U (1)

(gh)11

and the Weber number |
2

a pU-h
(2)

Here g is the acceleration of gravity, T the surface tension and p the

density of the fluid.

Garabedian [1] considered the problem with T - 0 (i.e. a - i). He

presented analytical evidence that a solution exists for all values of F

smaller than a critical value Fc. He then used an energy argument to suggest

that the only physically significant solution is the one for which F - Fc.

In addition he showed that Fc > 0.2363 and guessed the value Fc = 0.24.

Birkhoff and Carter [2] and Collins [31 using different approaches obtained

the value 0.23.

Vanden-Broeck (41 solved the problem with T - 0 numerically. His

results confirm that a solution exists for all values of F smaller than a

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041 and
the National Science Foundation under Grant No. MCS-P001960.
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critical value Fc. However Vanden-Broeck's results do not support the

approximate calculations of Garabedian [M], Birkhoff and Carter [2] and

Collines [3]. Vanden-Broeck found Fc - 0.36. This value is about forty

percent higher than the experimental value 0.25 presented by Collins [3].

In the present paper we show that the discrepancy between the

experiemntal value F - 0.25 and the theoretical value Fc - 0.36 is

considerably reduced by taking into account the effect of surface tension. We

show that for each value of T * 0, there exists a countably infinite number

of solutions. Each of these solutions corresponds to a different value of

F. As T tends to zero, all these solutions approach a unique limiting

configuration characterized by F - F* - 0.23. The corresponding profile is

found to be in good agreement with the experimental data of Collins [3].

It is interesting to note that the present inviscid problem is

qualitatively similar to the problem of viscous flow in a Hele-Shaw cell

(Saffman and Taylor (51, McLean and Saffman (6], Vanden-Broeck [7]). Both

problems are characterized by a continuum of solutions for T - 0 and a

discrete set of solutions for T > 0.

The problem is formulated in Sec. II. The numerical procedure is

described in Sec. III and the results are discussed in Sec. IV.

-3-
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II. Formulation

Let us consider the steady two-dimensional potential flow of an inviscid

incompressible fluid past a bubble in a tube of width h (see Fig. 1). The

pressure in the bubble is assumed to be constant. We introduce cartesian

coordinates with the origin at the top of the bubble and we assume that the

bubble is symmetric about the x-axis. Gravity acts in the negative x-

direction. As x + 10, the velocity approaches the constant U.

We define dimensionless variables by taking U as the unit velocity

and h as the unit length. We denote the potential function by # and the

stream function by *~. in addition we introduce the complex velocity by

u -iv and we define the function T - iA by the relation

C u11 iv e*T-ie (3)

Without loss of generality we choose * 0 at x -y =0 and * 0

on the surface of the bubble. it follows from the choice of the dimensionless

variables that *=- on the wall y

We satisfy the kinemetic condition on the wall y - .by reflecting theI2'
flow in that boundary (see Fig. 1). we shall seek the complex function

T - i as an analytic function of f + i* in the strip -1-C<<0. The

* complex plane is sketched in Fig. 2.

On the surface of the bubble, the Bernoulli equation yields

*1/2 q2 + gx T K B on SJ and S'J'. (4)

Here q is the flow speed, K the curvature of the free surface and B the

Bernoulli constant. In dimensionless variables (4) becomes

-4-
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2T 2 2 T, on Si and S'J'. (5)
2 2

F U

Here F and a are the Froude number and the Weber number defined by (1) and ....

(2) respectively.

It is convenient to eliminate x and B from (5) by differentiating (5)

with respect to #. Using the relation

ax+ =X - -Ti (6)
30 af U-iv

we obtain

e 2 + c- os e -- W e 5;) -0 on SJ and S'J'. (7)

F2

The kinemetic conditions on IS and IS' yield

e = , 4i=-1 < 0 (8)

e =0, 0=o < 0. (9) -.

Finally the flow configuration of Fig. I is characterized by a stagnation

point and a horizontal slope at the top of the bubble. This yields the

additional conditions

T = -D, e= at =0, 4=0 (10)
2

T -- 8 - -1 at 0 = , 4 = -1. (11)
2

This completes the formulation of the problem of determining T - ie.

This function must he analytic in the strip -1 < < < 0 and satisfy the

conditions (7)-(11).

-6-



III. Numerical Procedure

we solve the problem by using the procedure derived by Vanden-Broeck [7)

to investigate the effect of surface tension on the shape of fingers in a

Hele-Shaw cell. Thus we define a modified problem by replacing (10) and (11)

by

T- 8- y at 0, -0 (12)

T- = e--y at *i- 0, 4 - 1. (13)

Here y is a parameter to be found as part of the solution.

We will solve the modified problem defined by (7)-(9), (12) and (13), and

obtain solutions for all values of F and a. Then we will obtain the

solutions of the original problem by selecting among the solutions of the

modified problem those for which y, -.

Following Birkhoff and Carter [2) and Vanden-Droeck [7] we define the new

variable t by the relation

e- Wf t + (14)

This transformation maps the flow domain onto the unit circle in the complex

t-plane (see Fig. 3). I _

We note that
1/3

C [Ln(1 4 it)] as t + 4 i

€ ~(1•t) 2/w as t 1

(see Birkhoff and Carter (21 for details). Therefore we define the function

1(t) by the relation

-7-
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= -[-In C(l+t 2 )]1 /3 (-In c)'/3(1-t 2 )y 2/w[1+g(t)]. (15)

Here C is an arbitrary constant between 0 and 0.5. We choose C - 0.2. The

function Q(t) is bounded and continuous on the unit circle and analytic in

the interior. The conditions (8) and (9) show that Q(t) can be expanded in

the form of a Taylor expansion in even powers of t. Hence

e -[In C(1+t 2 )1 3 (-In C)"1 (1_t 2)y 2/w( 1+ ant 2 ) (16)
n= i

The function (16) satisfy (8), (9), (12) and (13). The coefficients an and 0

the parameter y have to be determined to satisfy (7) on SJ. The condition

(7) on S'J' will then be automatically satisfied by symmetry.

We use the notation t - Itle so that points on SJ are given by

ia it e , 0 < a < -. Using (14) we rewrite (7) in the formt2

2 d I- 1 2 d, T Acotge - + -2 e coise ---W cotg -- e cotgo -) = 0 (17)

F

Here (O) and e(a) denote the values of T and 8 on the free surface

sJ. 0

We solve the problem approximately by truncating the infinite series in

(16) after N-1 terms. We find the N-i coefficients an and the parameter

y by collocation. Thus we introduce the N mesh points 0

a1 = ~NI.,) I = 1,...,N. (18)

SIOO )N 2OO'[T ,d

Using (16) and (18) we obtain [(a1 ' [9(a)] , f- I [ (-1
a2ej(=a a a d , da ar=CY

and [daE0-- I in terms of the coefficients an and the parameter y.2 -

-9-



Substituting these expressions into (16) we obtain N nonlinear equations for

the N unknowns a,, n a 1,.*.,N-1 and y. We solve this system by

Newton's method. Once this system is solved for a given value of F, the -

shape of the jet is obtained by numerically integrating (6).

-10-



IV. Discussion of the results

We use the numerical scheme described in Sec. III to compute solutions of

the modified problem for various values of F and a. The coefficients an

were found to decrease rapidly a n increases. For example

a1 0 - 10- 2 , a20 ~ 2.10"3, a30 ' 3.10 -4  for F2 - 0.02 and a - 10. Most of

the calculations were done with N - 50.

In Figure 4 we present values of Y versus F for a - 10. As F

tends to infinity, y tends to zero. As F approaches zero, y oscillates

infinitely often around !.. Figure 4 shows that there exists a countably
2

infinite number of values of F for which y - Zj. The solutions corre-

sponding to these values of F are the solutions of the original problem.

Similar results were found for other values of a.

Vanden-Broeck solved the problem with a - m, (i.e., T - 0). He found

, F I F 0.36 (19)

y -0, F > F 0.36. (20) A
Therefore all the solutions corresponding to F < Fc are solutions of the

modified problem when a - m. The solution defined by (19) and (20) is shown

in Fig. 4.

The flow configuration of Fig. 1 can also serve to model a jet emerging

from a nozzle whose walls consist of the streamlines IS and IS' (see

Vanden-Broeck [2]). Relation (20) shows that the flow leaves the wall tan-

gentially for a m and F > Fc . On the other hand Fig. 4 indicates that

the flow does not leave the walls tangentially for a - 10 unless F -

Similar discontinuities in slope were encountered before by Vanden-Broeck

[6,7] in his analysis of the effect of surface tension on free-streamline

-11-
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flows. The recent work of Vanden-Broeck [101 shows that these unphysical

discontinuities could be removed by taking into account the thickness of the

walls and the finite curvature at the ends of the vail.

As a increases, the amplitudes and the wavelengths of the oscillations

in Figure 4 decrease. In Fig. 5 we present the two largest values of F,

which correspond to solutions of the original problem, an functions ofa.

The two curves approach F - F* - 0.23 as a tends to infinity.

Our numerical results suggest the following general result. If n

denotes an arbitrary positive integer, then the nth largest value of F,

which corresponds to a solution of the original problem, approaches

F -F* - 0.23 as a + -. Therefore the degenerancy associated with T - 0

is removed by solving the problem with T * 0 and then by taking the limit as

T 40.

These results imply that the physically relevant solution, when T *0,

In not the solution corresponding to F - FC 0.36 but the solution

corresponding to F - F' '- 0.23. The profile corresponding to F - F' and

T -0 is shown in Figure 6.

Collins3 found the experimental value F - 0.25. In addition he measured

the ratio of the radius of curvature at the top of the bubble to the width

h of the tube and obtained the value 0.305. The corresponding ratio for the

theoretical profile of Fig. 6 is 0.32.

-13-
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